10 JAHRE BRÜCKENBAU
für die brandenburgischen Autobahnen
<table>
<thead>
<tr>
<th>Bilderkürzung</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

1. Mühlenfließbrücke (A 10)
2. Oderbrücke (A 12)
3. Deilmseebrücke (A 12)
4. Kalkgrabenbrücke (A 10)
5. Spreebrücke Cottbus (A 13)
6. Teltowkanalbrücke (A 115)
7. Torbrücke über die A 9
8. Fußgängerbrücke über die Dahme
10 JAHRE BRÜCKENBAU
für die
brandenburgischen Autobahnen
Impressum

Redaktion und Koordination:
Brandenburgisches Autobahnamt (BABA)

Verfasser Teil 1:
MitarbeiterInnen des Dezernats 4 des BABA

Gestaltung Umschlag:
Schüßler-Plan Berlin, Barbara Schlosser

Satz und Druck:
Werbe-Design Dipl.-Ing. (FH) Klaus Peters

Fotos/Abbildungen:
Christiane Teßmann, BABA
Inhalt

- Zum Geleit 4
- Vorwort 5
- Zur Gestaltung der Autobahnbrücken in Brandenburg (Dipl.-Ing. E. Thiemann) 6
- Bau von drei Bogenbrücken im Zuge der brandenburgischen Autobahnen 13
 (Dipl.-Ing. E. Lehmann)
- Zum Brückenbau am Autobahnkreuz Schönefeld (Dipl.-Ing. J. Drescher) 19
- Die Erneuerung der Bauwerke 30 und 31 im Zuge der Autobahn 10 21
 (Dipl.-Ing. J. Drescher)
- Fußgängerbrücke bei Niederlehme – eine bemerkenswerte Holzbrücke 23
 (Dipl.-Ing. J. Drescher)
- Die Autobahn 113 neu (Dipl.-Ing. R. Hahn) 25
- Rahmenbrücken über die Autobahn 11 (Dipl.-Ing. P. Große) 27
- Spannbetonfertigteilebrücken – Baustoffprüfung und Instandsetzung 29
 (Dipl.-Ing. J. Gauert)
- Maßnahmen der Brückensofortinstandsetzung (Dipl.-Ing. F. Völk) 31
- Zur Bearbeitung von Bauwerksdokumentationen 32
 (Dipl.-Ing. B. Kant, Dipl.-Ing. E. Thiemann)
- Lärmschutzwände an der Autobahn (Dipl.-Ing. E. Kwiatkowski) 33
- Verkehrszeichenbrücken (Dipl.-Ing. E. Putschner) 34
- Zur Brückenprüfung (Dipl.-Ing. R. Ernst) 36

- Anhang I Auszüge aus Dokumentationen des Bundesministeriums für
 Verkehr, Bau- und Wohnungswesen zu Bauwerken des
 Brandenburgischen Autobahnamtes
- Anhang II Aus Veröffentlichungen in Fachzeitschriften
- Anhang III Bauwerksstatistik
10 Jahre Brückenbau
für die brandenburgischen Autobahnen

Nachstehende Zusammenfassung von veröffentlichten und nicht veröffentlichten Fachartikeln der Mitarbeiter/innen des Dezernats Konstruktiver Ingenieurbau zu verschiedenen Tätigkeitsfeldern der letzten 10 Jahre soll einerseits die bemerkenswerten Bauleistungen dokumentieren und andererseits den Dank an die in vielfältiger Weise an der Planung, Baudurchführung und Verwaltung Beteiligten zum Ausdruck bringen.

Hans-Reinhard Reuter
Direktor des Brandenburgischen Autobahnamtes

Letztendlich vermittelt diese Dokumentation einen Überblick über die große Vielfalt der Ingenieuraufgaben bei der Erneuerung der brandenburgischen Autobahnen und ist gleichzeitig Zeugnis einer Baupoche, die in der Geschichte des Autobahnbaus nur mit der des Autobahnneubaus vergleichbar ist.

Eckhard Thiemann
Dezernent
im Brandenburgischen Autobahnamt
Zur Gestaltung der Autobahnbrücken in Brandenburg

1 Einleitung

Brücken sind in vielfacher Hinsicht Teil unserer Kulturlandschaft und wirken oft unabhängig von ihrer Funktion prägend auf Stadt oder Landschaft. Diese Tatsache allein verpflichtet zur angemessenen Gestaltung. Bei der Beurteilung des Gestaltungserfolges spielen die sich verändernden Moden und das ästhetische Urteilsvermögen der Geschmack, über den sich stets streiten läßt, eine wichtige Rolle. Dessen ungeachtet stellte Leonhardt konkrete Regeln für die Gestaltung auf [1][2].

Zu der Frage, in welchem Umfang Gestaltungsregeln im Brückenbau hinreichende Anwendung finden, gibt es seit längerer Zeit eine breite und kontroverse Diskussion. So beklagt Dietrich in [4]: „Zwar verfügen wir heute über bauwissenschaftliche Möglichkeiten wie zu keiner Zeit zuvor und über eine hochentwickelte Ingenieurwissenschaft, mit deren Hilfe wir so gut wie jedes konstruktive Problem lösen können, aber die Brücken, die wir in unsere Landschaften und Städte bauen, werden immer phantasialoser und häßlicher.“

Grundsätzlich ist festzustellen, daß der Gestaltungsanspruch bei jeder Brücke in Abhängigkeit der Größe des Bauwerks sowie der topographischen

Abb. 1: Torbrücke über die Autobahn 11

Er setzt dabei ein Mindestmaß an Kenntnissen über Fragen der Ästhetik beim Bauingenieur voraus und verlangt eine zurückhaltende und angenehm wirkende Formgebung aller Brücken. Übertreibungen in Formen, Strukturen und Farben sind als störend und teuer unerwünscht.

2 Gestaltungsgrundsätze bei der Brückenerneuerung

Die Hauptaufgabe bei der Brückengestaltung bestand somit ganz überwiegend in der Bearbeitung der sogenannten Standardbrücken. Dazu wird in [3] ausgeführt:

„Es gibt aber eine Unzahl von untergeordneten Bauwerken, die einfach so zu entstehen scheinen, indem sie von Behörden geplant und gebaut werden. Beispiele dafür sind die Autobahnüberführungen oder Lärmschutzwände. Sie stehen am Ende der Bedeutungshierarchie und sind zumeist Stiefkinder der Gestaltung, obwohl sie in ihrer Anhäufung die Straßenlandschaft bestimmen und massiv in die Kulturlandschaft ein greifen.“

Wobei, wie bereits oben zitiert, auf die besonders anspruchsvolle Arbeit bei der Gestaltung dieser Bauwerkskategorie verwiesen wird.

Nach kritischer Wertung von Teilspekten der Gestaltungskonzeption für die Brücken der Reichsautobahn [7] gab es zu Beginn der Gestaltungsarbeit u. a. folgende Ziele:

- Gefällige und im Detail einfache Konstruktionen bei vorgegebenen Bauwerkslängen und Einzelstützweiten
- Vermeidung von Monotonie durch Variation der Bauart (Einbeziehung der Verbundkonstruktionen) sowie Betonung von Anschlußstellen bzw. der Lage der Brücken (Ortsnähe oder Landschaft) durch spezielle Gestaltung
- Erzeugung einer Streckenidentität (Brückenfamilie) unter Beachtung landschaftlicher Gegebenheiten
- Zurückhaltende Verwendung von Farbtönen

- ein Katalog der Zuordnung aller Brücken zu einem Gestaltungstyp und
- eine Gestaltungstypologie für Überführungs- und Unterführungsbaustücke.

Es lagen somit Entwurfsvorgaben für die Brückenfamilien der Autobahnen 2, 9, 10 und 115 [6] vor. In vereinfachter Form legte die Straßenbauverwaltung auch für die übrigen Autobahnen ge-
stalterische Regeln fest. Für die in der Planung befindliche neue Autobahn 113 ist ebenfalls ein Architekturbüro einbezogen worden.

3 Verwirklichung der Gestaltungsgrundsätze

Von der Vielzahl der Gestaltungsaspekte wurden in den zurückliegenden Jahren u. a. die folgenden Gesichtspunkte verfolgt, wobei die Erläuterungen ausschließlich Standardbrücken betreffen.

- Bauwerkslänge, statisches System, Bauhöhe
Die Länge der Einheitsbrücke (Gesamtbrückenlänge: Anzahl) liegt bei Unterführungsbauwerken bei 20 m und bei Überführungsbauwerken bei 50 m. Es handelt sich also im Durchschnitt um kleine bzw. mittelgroße Brücken. Deshalb überwiegt bei Unterführungen die Einfeldbrücke, deren Aufweitung aus wirtschaftlichen Gründen Grenzen gesetzt sind. Im Wettbewerb hat sich der Balken auf zwei Stützen gegenüber dem Rahmen durchgesetzt.

Bei Überführungsbauwerken finden fast ausschließlich Zweifeldbrücken, seltener Ein- oder Vierfeldbrücken, Anwendung. Obwohl Dreifeldbrücken gefälliger wirken würden, ergeben bei lichten Höhen um 4,70 m und lichten Weiten bis 2 x 30 m Zweifeldbrücken auch gestalterisch befriedigende und insgesamt wirtschaftlich vorteilhaftere Konstruktionen.

- Bauart und Bauweise
Bei der Bauweise dominiert die Deckbrücke aus konstruktiven und gestalterischen Gründen. Ausgenommen sind die wenigen Bogenbrücken, die mit Stützweiten ab 50 m i. d. R. über Wasserläufe führen. Die Form und die Abmessungen der Bögen, die Art, die Anzahl und die Abstände der Hänger und die Entscheidung für oder gegen einen Windverband sind auch gestalterische Fragen. Wesentlich für die Gestaltung sind außerdem neben der Wahl des Farbtons auch die Ausbildung des Bogenendes und dessen Übergang zum Widerlager, die Führung der Übergangskonstruktion und die Schalungsstruktur der Widerlager. Die Abbildung 4 zeigt, daß das bei Bögen überwiegend übl-

Abb. 5: Hängeranschlüsse bei Bogenbrücken

Abb. 6: Brücke an der Anschlußstelle Potsdam über die Autobahn 115
liche Blau auch durch andere Farbtöne zu ersetzen ist, um die Dominanz des Bauwerks zu betonen. Auch die Hängeranschlüsse gehören zu den wichtigen Details (Abb. 5).

Detailgestaltung

Baustoffwahl:

Schalungsstrukturen:

Überbauform der sogenannten Überflieger zu Einzelstützen zwingt (siehe Fachbeitrag). Bei den Überführungsbauwerken war die Gestaltungsvariante der Stützen u. a. davon abhängig, ob der Überbau eine indirekte Lagerung ermöglicht oder nicht. So erlauben massive Ortbetonquerträger bei Verbundbrücken eine indirekte Lagerung und damit Einzelstützen, während die weicheren Stahlquerträger die direkte Lagerung der Hauptträger und damit einen Stützrahmen oder eine Scheibe bedingen. Bei Spanntonfertigteilbrücken ist die Brückenbreite dafür maßgebend, ob eine volle Scheibe oder eine aufgelöste Variante gefälliger wirkt. Eine spezielle Gestaltung erhielten die Mittelstützen der sogenannten Torbrücken über die Autobahnen 2, 9, 12 und 13 jeweils vor dem Berliner Ring (Titelbild).

Die Gestaltung des Überganges der Flügel in die Straßenrampen wird oft vernachlässigt und i. d. R. mit zu kurzer Einbindung der Flügelenden in den anschließenden Damm geplant. Insbesondere fanden in diesem Zusammenhang folgende Punkte Beachtung (siehe auch Abb. 8 und 10):

- Schnittlinie von Böschung und Oberkante Sims 1,5 m vor dem Simsende
- Abschluß des Böschungspflasters bzw. der Wartungstreppe an der Böschungsschulter bzw. am Simmsbalken
- Ansatz der Böschungslinie in der Brückenansicht am Fußpunkt hinter der Widerlagervorderkante
- Gestaltung der Berme am Widerlager im Zusammenhang mit der Böschungslinie
- Einfassung der Wartungstreppe mit einem Kantenstein
- Gestaltung des Böschungspflasters
- Geeignete Bepflanzung der Böschungskegel (i. d. R. mit Rasen)
- Vermeidung von Großbepflanzung in Brückennähe (Sichtdreieck)

Abb. 8:
Brücke i. Z. der Autobahn 10 an der Anschlußstelle Rüdersdorf
Planung umzusetzen galt. Das Ziel aller Bemühungen war die Bildung von Brückenfamilien, d. h., die Schaffung einer Streckenidentität und die Vermeidung einer gesichtslosen Gleichförmigkeit bei den Standardbrücken. Die Großbrücken erforderten jeweils individuelle Gestaltungen.

Literaturverzeichnis

Springer-Verlag, Berlin 1984

Deutsche Verlags-Anstalt, 3. Aufl. 1990

Abschlußbericht der DFG-Forschungsgruppe FOGIB an der Universität Stuttgart, Oktober 1997

Callwey, 1998

Vortrag auf dem Deutschen Betontag 1995 in Hamburg

Berlin-Brandenburgische Bauwirtschaft, Heft 7, 1995, S. 23 – 24

Die Straße (1935) 8, S. 248 – 254

4 Schlußbemerkung

Die umfassende Erneuerung der Brücken im Zuge der brandenburgischen Autobahnen beinhaltete auch die Verwirklichung von Gestaltungsgrundsätzen für die überwiegende Anzahl von kleinen und mittelgroßen Brücken. Unter teilweiser Einschaltung eines Architekturbüros bzw. nach Typologien des Brandenburgischen Autobahnamtes erhielten die beteiligten Ingenieurbüros Vorgaben, die es bei der technischen...
Bau von drei Bogenbrücken im Zuge der brandenburgischen Autobahnen

Vorbemerkungen

Die Autobahnbrücken in den neuen Bundesländern waren nach der Wende von folgenden Mängeln geprägt, die in der Regel zur Erneuerung der Bauwerke führten:

- Nicht ausreichende Tragfähigkeit
- Querschnitt nicht RAS-Q entsprechend bzw. ohne Standstreifen
- Schlechter Bauzustand des Tragwerkes.

<table>
<thead>
<tr>
<th>Autobahn-Bezeichnung der Brücke</th>
<th>Bauzeit</th>
<th>Autobahnquerschnitt</th>
<th>Stützweite Bogenachsen</th>
<th>Breite zwischen Bogenachsen</th>
<th>Bogenstich Breite in Stützweite/Stützweite/Bogenstich</th>
<th>min. Konstruktionshöhe in Überbauchse</th>
<th>Querträgerabstand</th>
<th>Stahlbetonplattendicke Überbauende (cm)</th>
<th>Baustahl Betonstahl (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 11 Oder-Havel-Kanal-Brücke</td>
<td>1997-1999</td>
<td>RQ 29.5/2</td>
<td>102,13</td>
<td>14,92</td>
<td>6,85</td>
<td>1,92</td>
<td>3,70</td>
<td>32</td>
<td>391</td>
</tr>
<tr>
<td>A 12 Dehmseebrücke</td>
<td>1997-1998</td>
<td>RQ 29.5/2</td>
<td>120,00</td>
<td>16,16</td>
<td>7,43</td>
<td>1,84</td>
<td>2,90</td>
<td>32</td>
<td>408</td>
</tr>
<tr>
<td>A 115 Teltowkanalbrücke</td>
<td>1997-1999</td>
<td>RQ 35.5</td>
<td>71,50</td>
<td>10,20</td>
<td>7,0</td>
<td>1,60</td>
<td>4,00</td>
<td>35</td>
<td>347</td>
</tr>
</tbody>
</table>

*Abstand OK Versteifungsträger-Achse Bogen

Abb. 1: Oder-Havel-Kanal-Brücke

Oder-Havel-Kanal-Brücke

Unter weitgehender Wiederverwendung der Unterbauten wurde 1990 für die östliche Richtungsfahrbahn eine dreifeldrige stählerne Trägerbrücke mit orthotroper Fahrbahnplatte errichtet. Auf der Seite der westlichen Richtungsfahrbahn existierte nach der Kriegszerstörung seit Anfang der 50er Jahre ein dreifeldriger Stahlüberbau mit Stahlbetonplatte, dessen Tragfähigkeit wegen des schlechten Bauzustandes nur die Nutzung eines Fahrstreifens zuließ. Der unhaltbare Zustand wurde durch eine Erneuerung beseitigt (Abb. 1). Unter Berücksichti-

Es war möglich, den Überbau auf unterhaltungsarmen bewehrten Elastomerlagern zu lagern. Zur Begrenzung der Durchbiegungsdifferenz für die Fahrbahnübergangskonstruktionen mußte unter den Endquerträgern je ein zusätzliches Lager eingebaut werden.

Die Montage des Überbaus erfolgte auf der südlichen Rampe. Mittels Zugstäben, Hydraulikpressen und Zugkonsolen wurde der Überbau über je zwei Hilfssstützen, die auf beiden Ufern aufgestellt waren, längsverschoben. Bei einer maximalen Auskragung des ausgesteiften Überbaus von 53,00 m auf der Ostseite und 56,00 m auf der Westseite mußte der Überbau auf dem landseitigen Ende ballastiert werden. Vor dem Längsverschub war auf der Stahlkonstruktion zum größten Teil die Schalung für die Platte eingebaut worden. Ein Querverschub und ein Absenken von jeweils 1,00 m schloß die Montage ab. Der Montagelastfall war der maßgebende Bemessungslastfall für die Stahlkonstruktion.

Dehmseebrücke

Folgende Kriterien bestimmten Länge und Konstruktion der Brücke:

- Berücksichtigung eines späteren Ausbaus der Spree mit 5,25 m über BWo und freizuhalternder Gesamtbreite von 90,00 m einschließlich Betriebspisten
- Gewährleistung großzügiger Übergangsbereiche für Tiere beidseitig des Flusses als Ergebnis der Umweltverträglichkeitsprüfung
- Begrenzte Änderung der vorhandenen Autobahngrade mit dem Ziel eines 0,5%igen Längsgefalles
Diese Gründe führten zu einer Gesamtstützweite von 120,00 m und einem Versatz der neuen Widerlager zu den alten von 22,00 m auf der Ostseite und 7,00 m auf der Westseite (Abb. 2).

Der Überbau wurde auf der östlichen Rampe montiert. Die vorhandenen Pfeiler wurden durch provisorische stählerne Kragkonstruktionen aufgeständert und verlängert, über die der Längsverschub des Überbaus erfolgte. Der Montagelastfall mit einer größten Auskragung der Stahlkonstruktion von 57,80 m war für die Bemessung maßgebend. Der Überbau wurde für diesen Lastfall entsprechend ausgesteift.

Der südliche Überbau wurde 1999 zur Aufnahme eines dreistreifigen Verkehrs umgebaut. Langfristig ist auch hier die Erneuerung als Stabbogenbrücke geplant.

Teltowkanalbrücke

1962 wurden mit der Umverlegung der Autobahn 115 und Ausbau des Grenzkontrollpunktes Drewitz für die Querung des Teltowkanals zwei zweistegige Stahlverbundbrücken mit Spannbetonfertigteilen errichtet, die eine Stützweite von 73,54 m aufwiesen. Mit Brückenklasse 60 bzw. 30/30 entsprachen die Überbauten nicht mehr den heutigen Anforderungen und stellten eine Schwachstelle für den Schwerlastverkehr dar. Der sechsstreifige Ausbau der Autobahn 115 und der geplante Ausbau des Teltowkanals im Rahmen der Vorhaben Deutsche Einheit Nr. 17 begründeten die Erneuerung des Bauwerkes.

Auf engstem Raum kreuzen sich folgende Verkehrswege miteinander:
- Teltowkanal
- Autobahn 115
- die geplante S-Bahnstrecke Berlin Wannsee – Stahnsdorf

Unter Einhaltung der Ausbauparameter jedes Verkehrswege mußte die Bauhöhe der Teltowkanalbrücke auf ein Minimum reduziert werden. Zur Begrenzung der Stützweite erhält der Kanal im Endausbau einen Rechteckquerschnitt. Neben dem Kanal waren zwei 4,00 m breite Berieselungswege zu berücksichtigen (Abb. 3).

Die Lagerung der Brücke erfolgte auf Topflagern. Wegen der Begrenzung der Durchbiegungsdifferenz für die Übergangskonstruktion wurde unter jedem Endquerträger ein Elastomerlager eingebaut. Aus Lärmschutzzwecken erhielten die Überbauten einen Belag aus Splittmastixasphalt.

Abb. 4: Querschnitt
Konstruktionsbeschreibung

Die drei Stabbogenbrücken weisen ein einheitliches Konstruktionsprinzip auf, das hier am Querschnitt der Dehmseebrücke dargestellt wird (Abb. 4).

Für die längsten Hänger betragen die Eigenfrequenzen:
- Oder-Havel-Brücke 5,22 Hz
- Dehmseebrücke 4,38 Hz
- Teltowkanalbrücke 7,3 Hz.

Für alle Bauwerke wurde durch die spannungsf-lose Werkstattform eine optische Überhöhung vorgesehen und zwar in folgender Weise:
- Oder-Havel-Kanal-Brücke
 Die planmäßige Gradienten der Fahrbahn sowie parallel die Höhen des Ober- und Untergurtes wurden für den Lastfall $g + 1/3p$ ausgelegt, d. h., die Überhöhung stellt sich bei $< 1/3p$ ein.
- Dehmseebrücke
 Während die planmäßige Gradienten und die Höhen des Obergurtes dem Lastfall g entsprechen, wurden die parallelen Höhen des Untergurtes für den Lastfall $g + 1/3p$ ermittelt.
- Teltowkanalbrücke
 Die planmäßige Gradienten wurde mit dem Lastfall g berechnet, wobei das Untergurt für diesen Lastfall eine Überhöhung von 7 cm zugeordnet wurde.

Eine optische Überhöhung sollte in der Regel immer berücksichtigt werden. Eine einheitliche Festlegung für die drei beschriebenen Bauwerke wäre sinnvoll gewesen.

Hängeranschluß

An den drei ausgeführten Bauwerken wird die schnelle Entwicklung der Ausbildung des eingehüllten Hängeranschlusses an den Bogen und den Versteifungsträger in den letzten Jahren deutlich.

Das Büro Meyer, Wünstorf, Tragwerksplaner für die Ausführung der Dehmseebrücke, schlug über den Auftragnehmer Bau dem Brandenburgischen Autobahnamt vor, die Hängeranschlüsse dieser Brücke ohne Schweißung und ohne Freischnitt geschmiedet auszuführen (Abb. 5b).

Eine Stellungnahme des Lehrstuhls für Stahlbau der Rheinisch-Westfälischen Technischen Hochschule (RWTH), Aachen hierzu bildete die Voraussetzung für die Entscheidungsfindung des Brandenburgischen Autobahnamtes sowie die Unterstützung durch das BMVBW. Die der Stellungnahme zugrundeliegende Ausführungsplanung wollte die statische Berechnung und Formgebung, Aussagen zur Fertigung der Anker, Einschweißung auf der Baustelle und Betriebsfestigkeit enthalten. Die vergleichende Untersuchung der RWTH führte zu Vor- schlägen für die geschmiedete Ausführung aber auch zu alternativen Lösungen in geschweißter Ausführung. Die Nachweise wurden am ersten und damit am kürzesten Hänger geführt, der im Regel- fall die größte Ermüdungsbeanspruchung für Verkehrsbelastungen aufweist. Die Eignung der Vari- anten wurde aus den geometrischen Randbedingungen, den Spannungen und den Kerbfällen ermittelt. Im Ergebnis ist festzustellen, daß hinsichtlich der aufnehmbaren Lastwechsel der geschmiedete Anschluß die günstigsten Werte aufweist, die geschweißte Alternative jedoch voll ausreichend ist.

Für die Dehmseebrücke wurden die Anschlußblätter der Hänger von der Firma Anker Schröder, Dortmund im Stauenschmiedeverfahren hergestellt. Zunächst wurde das Material in mehreren Stufen bei einer Zwischenwärzung auf 1150°C bis 1250°C Caugestaucht und verteilt. Das Schmieden der Anschlußblätter bis in die Endform erfolgte im Gesenk. Neben der Oberflächenprüfung und der US-Prüfung sind folgende Geometriprü- fungen nach dem Schmiedevorgang vorzunehmen:
- Hängerdurchmesser

Abb. 6: Flägelansicht Teltowkanalbrücke
- Gesamtlänge
- Abweichung zur Längsachse in x- und y-Richtung
- Form des Schmiedeteils nach Länge, Radius der Ausrundung, Einhaltung der Symmetrie in x- und y-Richtung, Einhaltung der Querschnitte nach Maß und Fläche
- Winkelkontrolle zwischen Schmiedeteil oben und unten (Stoßkanten).

Übergangskonstruktionen

Im Fahrbahnbereich der Überbauten wurden ab- hängig von Lagerung und Dehnweg ein- bis dreifaltige Übergangskonstruktionen eingebaut. Für zwei der beschriebenen Brücken wurde das Ziel verfolgt, das Niederschlagswasser, das den Bogen herunter fließt, nicht wie üblich auf die Auflager- bank zu leiten. Die Übergangskonstruktionen der Fahrbahn wurden deshalb, wie bei anderen Brückenkonstruktionen üblich, in den Kappen, d. h., auch im Bogenbereich fortgesetzt. Durch die Brückenschiefe und die Ausladung des Bogens muß aber die Übergangskonstruktion in relativ gro- ßem Abstand zur Stützachse angeordnet werden. Das bedingt abgewinkelte Konstruktionen.

Gestaltung der Bauwerke

Im letzten Jahrzehnt wurde der Gestaltung von Bogenbrücken in Deutschland ein höherer Stellen- wert eingeräumt. Das Hauptaugenmerk liegt da- bei auf der Ausbildung des Bogenfußpunktes in Ein- heit mit der Widerlager- und Flügel ausbildung so- wie der Farbgestaltung.

1. Allgemeines

Mit dem sechsstreifigen Ausbau des Berliner Ringes im Rahmen der Verkehrsprojekte Deutsche Einheit waren u. a. das Autobahnbauwerk Schönefeld und drei Autobahnreiecke umzugestalten. Wie bei den übrigen Ingenieurbauwerken der Autobahn 10 sollten auch die Verknüpfungspunkte von Autobahnen eine einheitliche Gestaltung erhalten. Im Auftrag der Straßenbauverwaltung entwickelte das Architekturbüro lux & Partner Gestaltungsvorschläge für die „Überflieger“.

Aus den Ergebnissen der Vorpläne für das Autobahndreieck Potsdam folgte die Entscheidung, die „Überliefer“ als Stahlverbundbrücken mit einem einzelnen Hohlkasten zu bauen. Es wurde festgelegt, die zur Bauwerksprüfung erforderliche lichte Höhe im Kasten von 1,90 m auf den Bereich zu beschränken, der dem Durchgang durch die Brücke dient und in den übrigen Bereichen Höhen bis minimal 1,60 m zuzulassen. Damit ließen sich bei den gegebenen Stützweiten für diesen Querschnitt wirtschaftliche Bauhöhen erzielen. Die Vorfertigung des Stahlüberbaus und die Herstellung der Fahrbahnplatte mittels eines Schalwagens ermöglichten auch eine geringere Verkehrsbeeinflussung als eine Spannbetonlösung mit bodengestütztem Traggerüst. Aus der Festlegung auf geschlossene Querschnitte folgte gleichzeitig, daß für die Pfeiler nur Einzelstützungen erforderlich sind. Damit ließ sich trotz der schiefwinkligen Kreuzungen zwischen den einzelnen Richtungsfahrbahnen und der Krümmung der Überführungen dennoch eine hohe Transparenz unter der Brücke erreichen. Aus Trassierungsgründen konnten nicht an allen Bauwerk eine Aufweitung der Mittelstreifen erfolgen, die für die Verwendung von kreisrunden Stützen erforderlich wäre. Im Autobahnbauwerk Schönefeld sind deshalb ovale Stützen verwendet worden, die durch die Orientierung auf den jeweiligen Kreuzungswinkel der Achse unterschiedlich dick wirken.

2. Brücken des Schönefelder Kreuzes

Die „Überflieger“ (siehe Abb. 1) haben Bauwerkslängen zwischen 132,00 m und 205,50 m. Die Breite zwischen den Geländen beträgt einheitlich 13,25 m. Die Hohlkästen bestehen aus Stahl St 52-3, die schlaff bewehrten Fahrbahnplatten sind aus Beton B 35 gefertigt. Die einzelnen maximal 19,00 m langen Schüsse der Stahlkonstruktion wurden im Bereich der Baustelle zu größeren Einheiten zusammengebaut und mit einem Autokran eingehoben. Die beengten Platzverhältnisse am Widerlager erforderten, daß ein Teil der Bewehrung der Endquerträger bereits mit dem vormontierten Kasten eingehoben wurde. Die Brücken liegen auf Kalottenlagern, das Festlager befindet sich jeweils auf einer Stütze. Die Herstellung der Fahrbahnplatten erfolgte kontinuierlich von einem Widerlager zum anderen in Takten von ca. 20,00 m Länge.

Abb. 2: Schönefelder Kreuz im Juli 2000
Die Erneuerung der Bauwerke 30 und 31 im Zuge der Autobahn 10

Bauwerk 30 – Dahmebrücke

![Querschnitt der Dahmebrücke (Bauwerk 30)](image1)

![Querschnitt des Bauwerkes 31](image2)
schweißt. Das restliche Feld wird in einem Stück zur Baustelle gebracht und direkt vom Wasser aus montiert. Anschließend kann die Verbundplatte kontinuierlich in 6 Takten vom Ostwiderlager beginnend betoniert werden. Nach der Komplettierung der Brücke mit Dichtung, Belag, Kappen und einer 4,00 m hohen Lärmschutzwand wird der Verkehr auf den neuen Überbau gelegt und danach die alte Konstruktion abgebrochen. Analog zum ersten Überbau wird anschließend der zweite neue Überbau errichtet.

Bauwerk 31

Montage des Bauwerkes 30 im August 2000
Fußgängerbrücke bei Niederlehme – eine bemerkenswerte Holzbrücke

Brücke. Als Dachdeckung wurde braun beschichtetes Trapezblech aus Aluminium verwendet. Die Durchdringungsbereiche der Fachwerkstäbe durch die Bodenplatte sind mit Zinkblech ummantelt, so daß keine Feuchtigkeit eindringen kann. Das Gelände liegt in der Fachwerkebene. Als Füllung dient Maschendraht, so daß die Transparenz der Brücke in der Ansicht nicht eingeschränkt wird.

Abb. 2: Gesamtansicht der Fußgängerbrücke
Die Lage der geplanten sechsstreifigen Autobahn 113 neu als Verbindungsautobahn zwischen dem Berliner Ring (Autobahn 10) und dem Berliner Stadtring (Autobahn 100) ist für den Bereich des Landes Brandenburg auf der Grundlage eines Raumordnungsverfahrens festgelegt und vom BMVBW für die gesamte Strecke in einem Linienbestimmungsverfahren verbindlich bestimmt worden. Die Autobahn 113 neu schließt am Bau-bzw. Betriebs-km 3+150, Ortslage Kiekebusch an die Autobahn 113 alt an und endet an der Landesgrenze Berlin/Brandenburg (Bau-km 9+853), Ortslage Schönefeld (siehe Abb.).
Die Trasse verläuft südlich von Waltersdorf, Ortslage Kiekebusch, die Autobahn 113 alt, passiert den Friedhof Waltersdorf westlich und schwenkt anschließend auf die Parallelage zur Berliner Chaussee ein. Die Gradienten folgt hier dem Gelände. Nördlich der geländegleichen Querung des Flughafengeländes steigt die Gradienten auf die Hochlage an, überquert die Bundesstraße 96a, die Bohnsdorfer Chaussee, die Anlagen der Deutschen Bahn AG und erreicht den Anschlusspunkt Landesgrenze Berlin/Brandenburg etwa in Geländeniveau. Aufgrund des zu erwartenden Verkehrsaufkommens kommt von der Ortslage Kiekebusch bis zum Erreichen der Ortslage Schönefeld (Bau-km 8+450) ein Querschnitt RQ 35,5, danach bis zur Landesgrenze BW 1

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Erläuterung</th>
<th>Lage</th>
<th>Lichte Weite zwischen Widerlagern [m]</th>
<th>Breite zwischen Geländen [m]</th>
<th>Brückenklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW 1</td>
<td>Kreuzungsbauwerk A 113 neu/Selchower Flutgraben</td>
<td>km 3+512,162 der A 113 neu</td>
<td>6,70</td>
<td>36,05</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 1 Ü1</td>
<td>Autobahndreieck Waltersdorf</td>
<td>km 5+136,718 der A 113 neu</td>
<td>94,0</td>
<td>13,50</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 1 Ü2</td>
<td>Anschlußstelle Diepensee</td>
<td>km 6+147,109 der A 113 neu</td>
<td>66,80</td>
<td>26,00</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 2</td>
<td>Kreuzungsbauwerk A 113 neu/Gleis der DB AG Flughafen-Anschlußgleis und zwei Verbindungsstraßen</td>
<td>km 6+792,256 der A 113 neu</td>
<td>47,50</td>
<td>49,15</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 2 Ü1</td>
<td>Überführung der Verbindungsstraße Flughafen Ost-West</td>
<td>km 7+855,000 der A 113 neu</td>
<td>49,50</td>
<td>13,25</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 3</td>
<td>Kreuzungsbauwerk A 113 neu/ B 96a</td>
<td>km 8+863,468 der A 113 neu</td>
<td>53,87</td>
<td>33,50</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 5</td>
<td>Kreuzungsbauwerk A 113 neu/ DB AG Berliner Außenring</td>
<td>km 9+154,920 der A 113 neu</td>
<td>62,00</td>
<td>33,45</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 5.1</td>
<td>Kreuzungsbauwerk A 113 neu/ DB AG Berliner Außenring</td>
<td>km 0+278,990 Verteilerfahrbahn</td>
<td>62,00</td>
<td>11,87</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 5.2</td>
<td>Kreuzungsbauwerk A 113 neu/ DB AG Berliner Außenring</td>
<td>km 0+303,397 Verteilerfahrbahn</td>
<td>62,00</td>
<td>10,52</td>
<td>60/30</td>
</tr>
<tr>
<td>BW 6</td>
<td>Kreuzungsbauwerk A 113 neu/ Altglienicke Chaussee (L 751)</td>
<td>km 9+439,198 der A 113 neu</td>
<td>103,80</td>
<td>37,50 (34,50)</td>
<td>60/30</td>
</tr>
</tbody>
</table>
Grenze ein Querschnitt RQ 33 zur Anwendung. Die Verknüpfung mit dem untergeordneten Straßennetz erfolgt an der Verbindungsstraße Waltersdorf – Kienberg, der Bundesstraße 96a und der Bundesstraße 179/Landesstraße 751 sowie gesondert als Anschlußstelle zum Flughafen Berlin - Brandenburg International.

Das Bauvorhaben umfaßt insgesamt 10 Brückenbauwerke (siehe Tabelle) und ca. 1.100 m Stützwände mit Höhen bis zu 7,50 m. Das im Grund- und Aufriss gekrümmte Bauwerk 1Ü1 wird als zweistegiger Spannbetonplattenbalken geplant.

Mit einer Stahlträgerverbundkonstruktion für das Bauwerk 1Ü2 wird die Anschlußstelle Flughafen betont.

Die Variantenuntersuchungen für das Bauwerk 6 führten von der ehemals geplanten Hochstraße mit ca. 210 m Länge zu einem Dreifeld-Bauwerk mit ca. 110 m Gesamtstützweite, da sich die Nutzung der Brückenunterflächen als unwirtschaftlich erwies. Die im Grundriss gekrümmten Überbauten werden als zweistegige Spannbetonplattenbalken geplant.

Im Auftrag des Brandenburgischen Autobahnamtes erarbeitete das Büro Jux & Partner ein Gestaltungs­konzept für die Ingenieurbauwerke der Autobahn 113 neu. Es wurden Gestaltungsmerkmale entwickelt, welche die Brückenbauwerke und die Lärmschutzwände untereinander in Beziehungen setzten und in der Charakteristik auf die Nähe der Strecke zum zukünftigen Flughafen Berlin - Brandenburg International hinweisen. Kennzeichnend hierfür sind zum Beispiel neben der Farbgestaltung die Ausformung der Kappenenden als „Leitflügel“, die Anordnung von drei schmalen weißen Fugenbändern an Widerlagern und Stützen sowie schräge weiße Elemente an den Geländerenden zur Bildung eines kraftvollen Geländerabschlusses bei Brücken ohne Lärmschutzwand.

Der Baubeginn der neuen Autobahn ist im Jahre 2001 vorgesehen.
Von der Gestaltung dieser Brücke ausgehend, erfolgte der Entwurf eines Stahlbetonrahmens für Wirtschaftswege-Überführungen (Brückenklasse 30/30) zunächst für eine Breite von 6,50 m zwischen den Geländen und mit einer lichten Weite von 34,00 m (Abb. 1). Neben der gestalterisch befriedigenden Wirkung des Bauwerkes sind folgende Vorteile zu erkennen:
- Beibehaltung der Wegeanschlüsse und dadurch Verhindern von Rodungen bei Brücken mit vorgesetzten Rahmenstielcn im Gegensatz zu den üblichen Zweifeldbrücken
- Wegfall der Mittelstütze, d. h. keine Anprallgefährdung und Möglichkeit der Verringerung der Breite des Mittelstreifens auf 3 m (im Biosphärenreservat erforderlich, um beim Ausbaumern gleich mit Standstreifen den Eingriff in die umgebende Natur zu minimieren)
- geringerer Erhaltungsaufwand durch Wegfall der Lager und Übergangskonstruktionen.

Der zuerst starre Rahmen mit angehängten Flügeln (Baujahr 1996) wurde schließlich zu einem klassischen Zweigelenkrahmen weiterentwickelt. Hier sind Rahmenstiel und Flügel getrennt, stehen jedoch auf einer gemeinsamen Fundamentplatte. Nach dem erfolgreichen Bau der Brücke mit 6,50 m Breite zwischen den Geländen wurde ein Entwurf für 5,00 m Gesamtbreite erarbeitet. Für diesen Querschnitt besteht im Bereich der Autobahn 11 ein großer Bedarf, wenn nur Belange der Forst, der Feuerwehr und des Tourismus maßge-
bend sind. Die ersten Brücken mit 3,50 m Fahr­
bahnen entstanden im Jahre 1999.
Bis Ende 2000 stehen dem Verkehr insgesamt 13
Rahmenbrücken aus Stahlbeton zur Verfügung.
Eine Weiterentwicklung der Rahmenbrücken, die
zur Überführung von Straßen (Brückenklasse 60/
30) erforderlich wurde, erfolgte mit Hilfe der
Verbundbauweise (Abb. 2). Ausgehend von der Erst­
anwendung von Verbundfertigteilen an der An­
schlußstelle Calau im Jahre 1999, sah nun der Ent­
wurf des Rahmenriegels eine Verbundkonstruktion
ebenfalls als Fertigteile vor. Nach dem Betonieren
der Stahlbetonstiele wird das im Werk hergestell­
te Fertigteil antransportiert und montiert und da­
nach mit Ort beton komplettiert. Die Variation des
Farbtons des Riegels gestattet vielfältige Gestal­
tungsmöglichkeiten. Die beschriebenen Rahmen­
brücken tragen dazu bei, die Autobahn für den
Nutzer nicht nur sicherer und zweckmäßig, son­
dern auch ästhetisch befriedigend zu gestalten.

Abb. 2:
Rahmenbrücke im Zuge einer
Straße über die Autobahn 11.
Spannbetonfertigteilbrücken - Baustoffprüfung und Instandsetzung

Im Autobahnnetz Brandenburgs befanden sich 96 Spannbetonfertigteilbrücken, die im Rahmen der Erweiterung der Autobahn der ehemaligen DDR errichtet wurden. Folgendes Fertigteilsortiment kam zum Einsatz:

<table>
<thead>
<tr>
<th>Trägertyp</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTB/BTC</td>
<td>6</td>
</tr>
<tr>
<td>BT 50/BT 70</td>
<td>71</td>
</tr>
<tr>
<td>BT 500/BT 700</td>
<td>14</td>
</tr>
<tr>
<td>BT 700 V</td>
<td>5</td>
</tr>
<tr>
<td>insgesamt:</td>
<td>96</td>
</tr>
</tbody>
</table>

Da diese Brücken die Forderungen des technischen Regelwerkes der Bundesrepublik Deutschland nur teilweise erfüllten, galt es in der ersten Phase, die Verkehrssicherheit im Brückenbereich zu erhöhen und den baulichen Schutz zu verbessern. Dies erfolgte auf der Basis der „Arbeitshilfen für Planung und Vergabe des Bundesministeriums für Verkehr – Sofortinstandsetzungsmaßnahmen an Brücken und anderen Ingenieurbauwerken der Bundesfernstraßen in den neuen Bundesländern“. Die ersten Maßnahmen der Sofortinstandsetzung betrafen den Anprallschutz für die Stützen, die Rand trägersicherung und die Absturzsicherung. Es folgten dann Baustoffuntersuchungen an den Fundamenten und den Fertigteilen mit nachstehender Zielstellung:

- Untersuchung der Fundamente auf Schäden in folge von Alkali-Kieselsäure-Reaktion (AKR) im Vorlauf zur Ausführung des Anprallschutzes
- Ermittlung von Baustoffwerten als Grundlage für die Erstellung nachträglicher Bestandsunterlagen für die Brücken
- Einschätzung der Erhaltenswürdigkeit der Bauwerke als Voraussetzung für die Durchführung einer grundhaften Instandsetzung.

Einige Brückenfundamente wiesen eine derartig großes AKR-Potential auf, daß die Gefahr des Durchstanzens der Scheiben durch die Fundamente bestand. Deshalb konnte die Typenlösung für den An-

In der zweiten Phase der Baustoffuntersuchungen wurden die Fertigteile der Brücken und die Widerlager der A-Bauwerke geprüft. Das Programm umfaßte folgende wesentliche Prüfungen:

- Betondruckfestigkeit und -rohdichte/Beton gefüge
- Betondeckung/Karbonatisierungstiefe
- Chloridgehalt/Sulfatgehalt
- AKR-Untersuchung mit den Teilen Bindemittelgehalt/Alkaligehalt
 Petrografie/Floureszenztest
- Restdehnungsverhalten.

Die Ergebnisse dieser Baustoffuntersuchungen wurden bei der Erarbeitung von nachträglichen Bestandsunterlagen für die Brücken genutzt. Außerdem bildeten sie gemeinsam mit den Brückenprüfberichten nach DIN 1076 ein wesentliches Kriterium für die Entscheidung über grundhafte Instandsetzung oder Erneuerung der Brücken.

- Erneuerung von Fahrbahn und Kappen
- Neuaufbau der Dichtung entsprechend ZTV-BEL-B 1 bzw. teilweise BEL-B 3
- Herstellen von Fahrbahnübergängen aus Asphalt über den Stützen und an den Überbauenden
- Anordnung einer regelgerechten Absturzsicherung in Form von Betonschutzwänden bzw. Schutzplanken und Geländer mit Seil
- Anlegen von Böschungstreppen und Erneuerung von Böschungbefestigungen
- Betoninstandsetzung der Ansichtsflächen und Beschichtung mit Oberflächenschutzsystem OS-C nach ZTV-SIB.

An elf A-Bauwerken der Autobahn 24, die entsprechend ihrem Bauzustand nur noch mittelfristig nutzbar sind, erfolgten parallel zur Überbauung der Strecke Teilinstandsetzungen.

Für einige Brücken ergab sich im Ergebnis der Baustoffprüfungen ein derart schlechter Bauzu-

Im Bestand des BABA werden sich ab Ende des Jahres 2000 somit noch 82 Spannbetonfertigteilbrücken mit 113 Überbauten aus DDR-Produktion befinden.

Anprallscheiben (siehe Abb. bei Fachbeitrag „Spannbetonfertigteilbrücken“) zwischen und vor den Stützen, verankert mit den vorhandenen Fundamenten bzw. gegründet auf aufbetonierten Fundamenten, bildeten die Regellösung für die Anprallsicherung. In Einzelfällen umhüllte die Anpral lkonstruktion die vorhandene Stütze. Für Stahl- und Stahlverbundbrücken wurden die Stützen verstärkt. Für Bauwerke, die kurzfristig erneuert wer den, wurden zwischenzeitlich Betonschutzwände errichtet.

Als Absturzsicherung wurden vorhandene Gelän de entweder durch neue Lt. Richtzeichnung ersetzt oder Handläufe mit Stahlseilen aufgeschweißt. 86 Bauwerke weisen zur Zeit noch provisorische Absturzsicherungen (mobile Beton- und Stahlschutzwände) auf oder sind für eine Geschwindigkeit von 50 km/h beschränkt. Für diese Bauwerke sind kurz bis mittelfristig Ersatzbauwerke vorgesehen.

Die Randträgersicherung aller in Frage kommen den Fertigteilbrücken (88 Stück) stellte den drit ten Arbeitsschwerpunkt dar und wurde bis Ende 1996 verwirklicht.

Die Anprall-, Absturz- und Randträgersicherung gehört mit tangierenden Reparaturen an Dichtungen und Übergangskonstruktionen zum vordringlichen Arbeitsschwerpunkt, bevor grundhafte In standsetzungen von Einzelbrücken folgten (siehe Abb.).
Zur Bearbeitung von Bauwerksdokumentationen

Nach Konsultationen bei der Senatsbauverwaltung Berlin und dem Autobahnamt Hamm ergaben sich insbesondere folgende Schwerpunkte:
- Schaffung der personellen, räumlichen und konzeptionellen Voraussetzungen für eine Dokumentationsbearbeitung entsprechend den Richtlinien der Straßenbauverwaltung
- Erarbeitung amtsinterner Regelungen für die Herstellung von Bestandsdokumentationen im Rahmen einer Ab- und Übernahmeordnung und deren Übertragung auf die DEGES
- Durchsetzung von Ordnungsprinzipien und deren Abstimmung mit dem Ministerium für Stadtentwicklung, Wohnen und Verkehr (Aktenordnung und insbesondere Klärung des Inhalts der Bauwerksakte, Zusammenwirken mit dem Landesamt für Bauen, Verkehr und Straßenwesen beim Aufbau der Datenbank)
- Organisation und Durchführung der Erstbeschaftigung von Bestandsdokumentationen einschließlich der Einstufung der Brücken für zivile und militärische Lasten
- Schaffung der Voraussetzungen für die brücken-technische Bearbeitung von Schwerlasttransportanträgen.

Erstellen des Bauwerksbuches mit dem Programm SIB-Bauwerke nach ASB, das Scannen von Unterlagen sowie die Bereitstellung von CAD-Daten für die Bauwerksplanung ergeben sich neue Aufgabenstellungen. Dadurch bestehen neben der Laufenthaltung der Dokumentationen drei Arbeits schwerpunkte.
- Die Datenerfassung und -bearbeitung fertiggestellter Maßnahmen sowie die laufende Aktualisierung der in SIB-Bauwerke vorhandenen Daten
- Die digitale Erfassung, d. h. das Scannen von Bestandsunterlagen sowie die Einspeisung von TIFF-Dateien in das Archivierungssystem Archief X.

Die bisherige Neubautätigkeit hat gezeigt, daß der zu bewältigende Umfang neuer Bestandsdokumentationen alle Prognosen übersteigt. Deshalb müssen zusätzliche räumliche Kapazitäten verfügbar sein, um eine ordnungsgemäße Lagerung der Unterlagen im nächsten Jahrzehnt zu gewährleisten.

Zusammenfassend ist festzustellen, daß seit 1993 vom Brandenburgischen Autobahnamt die wichtigsten Voraussetzungen für die Bearbeitung der Bauwerksdokumentationen entsprechend den Richtlinien der Straßenbauverwaltung geschaffen wurden.

Die erste Lärmschutzwand wurde im Jahr 1993 in Kombination mit einem Lärmschutzwall an der Autobahn 11 nahe der Anschlussstelle Finowfurt fertiggestellt (Abb. 2). Die ca. 500 m lange und 4 bis 5 m hohe Wand besteht aus kesseldruckimprägnierten Hölzern zwischen Stahlpfosten auf einer Rammrohrgrundung. Als gestalterisches Merkmal wählte man senkrecht angeordnete Halbhölzer und auf der Anliegerseite eine einfache Brettschalung. Dort befindet sich auf der gesamten Länge der Lärmschutzwand ein ca. 10 m breiter dicht bewachsender Streifen, der die Lärmschutzwand abdeckt. Diese optimalen Voraussetzungen einer anwohnerseitigen Begrünung sind leider nur bei wenigen Lärmschutzwänden erreichbar.

Inzwischen wurden insgesamt ca. 35 km Lärmschutzwand errichtet bzw. sind im Bau befindlich. Die notwendige Einpassung an tangierende Brückenbauten sowie wachsendes öffentliches Interesse an Lärmschutzwänden führte oft dazu, bei der Planung Architekten einzubeziehen. So erarbeitete das Architekturbüro Jux & Partner Gestaltungstypologien für den Berliner Ring (Autobahn 10) und die Autobahn 115, die gemeinsame Gestaltungselemente für Brücken und Lärmschutzwände umfassen.

Nach der Auswertung einer Analyse errichteter Lärmschutzwände vom Oktober 1994 kam es zu folgender Beschränkung der Bauarten:

- im Streckenbereich Beton oder Holz mit Stahlpfosten im 6 m-bzw. 5 m-Raster
- auf den Bauwerken transparente Kunststoffe mit Stahlpfosten nach Richtzeichnungen des BMVBW
Nachfolgend vollzog das Brandenburgische Autobahnamt den Übergang zu Lärmschutzwänden aus haufwerksporigem Beton mit hochabsorbierender Oberfläche, die aufgrund einer höheren Dauerhaftigkeit, vielfältiger Gestaltungsmöglichkeiten und geringerer Unterhaltungskosten Vorteile gegenüber Konstruktionen mit Holz bieten (Abb. 1). Beton ermöglicht eine breite Skala für die Gestaltung durch die Verwendung farbiger Elemente, teilweise in Kombination mit Klinkerteilen und Rankgittern. Zudem ist die Entsorgung der Betonelemente unkompliziert und kostengünstig. Weiterhin erbringen Betonelemente durch einen größeren Regelpostenabstand von 6,00 m Einsparungen bei der Gründung.

Ein großes Problem für die Gesamtwirkung von Lärmschutzwänden bilden die Graffitiangriffe. Nicht nur aus diesem Grund sind intensive Bepflanzungen das optimalste Gestaltungselement.
Verkehrszeichenbrücken sind für die Verkehrsleitung auf mehspurigen Autobahnen unumgänglich. Inzwischen wurden 538 Stück dieser Bauwerke errichtet. Für die Gestaltung der Konstruktion sind in der Regel funktionale Gründe maßgebend.

Zur Brückenprüfung

Für die Durchführung der praktischen Prüftätigkeit waren folgende Maßnahmen entscheidend:
- der personelle Aufbau der Prüfruppen in den Brückeninspektionen,
- ihre den Aufgaben angepaßte Ausstattung mit Fahrzeugen, Meßgeräten und Sperrtechnik,
- die fachliche Ausbildung der Prüfer.

Der Arbeitsumfang eines Prüfruppen umfaßt pro Jahr ca. 200 planmäßige Prüfungen an Brücken, Verkehrszeichenbrücken und Lärmschutzwänden. Hinzu kommen zahlreiche Einsätze infolge von Havarien.

Die Arbeitsaufgaben der Brückenprüfung gliedern sich in die Regelprüfungen nach DIN 1076, die Prüfungen vor Abnahme einer Bauleistung, die Sonderprüfungen nach Havarien und bei plötzlich auftretenden erheblichen Schäden oder Bauzustandsveränderungen.

Die bei Prüfungen festgestellten Schadensstrukturen werden sich zukünftig quantitativ verringern, da immer mehr alte Bauwerke bereits instandgesetzt bzw. durch neue Bauwerke ersetzt wurden. Qualitativ treten jedoch neue Schäden auf. Da die meisten dieser Schäden Gewährleistungsmängel sind, spielen die Brückenprüfungen vor der Abnahme der Bauleistung bzw. vor dem Ablauf der Gewährleistung eine zunehmend große Rolle.

Die Bauwerksprüfung erlangt als Nachweis der Bauwerkssicherheit, als Planungsgrundlage und als Grundlage der Analysetätigkeit trotz des intensiven Neubauprogramms auch deshalb zunehmend an Bedeutung, da die Gesamtbrückenfläche ständig anwächst und das Ausrüstungsniveau der Brücken (Lager, Übergänge usw.) ansteigt.
Auszüge aus Dokumentationen des BMVBW zu Bauwerken des Brandenburgischen Autobahnamtes

- Lärmschutzwand auf Bauwerk 13 der Autobahn 10
 Seite 1 - 3

- Lärmschutzwand auf Bauwerk 29 der Autobahn 15
 (Lärmschutzwände auf Brücken, 1995, S. 59 - 62, 63 - 65)
 Seite 4 - 6

- Bauwerk Nr. 4048501 über die Autobahn 13
 (Sammlung Straßenbrücken, 1997, S. 125 - 128)
 Seite 7 - 9

- Brücke an der Anschlußstelle Schwarzhöhe
 Seite 10 - 17

- Spreebrücke Cottbus
 Seite 18 - 27

- Brücke über die Schwarze Elster bei Ruhland
 Seite 28 - 35

- Brücke am Autobahndreieck Potsdam
 Seite 36 - 47

- Kalkgrabenbrücke Rüdersdorf
 Seite 48 - 57

- Oderbrücke Frankfurt
 (Brücken und Tunnel der Bundesfernstraßen, 1998, S. 25 - 37)
 Seite 58 - 70

- Havelbrücke bei Werder
 (Brücken und Tunnel der Bundesfernstraßen, 1999, S. 69 - 80)
 Seite 71 - 82

- Hagenbrücke im Zuge der Autobahn 9
 (Besondere Brücken II/DEGES, 2000, S. 97 - 100)
 Seite 83 - 86
Anhang II

Aus Veröffentlichungen in Fachzeitschriften

- Brücken im Zuge der Brandenburgischen Autobahnen
 (BBW, 1992, S. 435 - 437) 1 - 3

- Neubau der Spreebrücke Cottbus
 (BBW, 1994, S. 471 - 473) 4 - 6

- Die Gestaltung der Autobahnbrücken in Brandenburg
 (BBW, 1995, S. 23 - 24) 7 - 8

- Erneuerung der Oderbrücke

- Havelbrücke – Instandsetzung und Erneuerung
 (BBW, 1996, S 13 - 14) 13 - 14

- Die Rüdersdorfer Brücken im Zuge der Bundesautobahn 10
 (Straße und Autobahn, 1997, S. 569 - 575) 15 - 21

- Brückenbau im Zuge der Brandenburgischen Autobahnen
 in den Jahren 1992 bis 1997
 (BBW, 1998, S. 6 - 9) 22 - 25

- Stahlverbund – eine Alternative zu Spannbeton bei Zweifeldbrücken
 über Autobahnen
 (Straße und Autobahn, 1999, S. 359 - 363) 26 - 30
Anhang III

Bauwerksstatistik

<table>
<thead>
<tr>
<th>Bachelorarbeit</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersstruktur</td>
<td>1</td>
</tr>
<tr>
<td>Brückenklassen</td>
<td>2</td>
</tr>
<tr>
<td>Konstruktionsarten</td>
<td>3</td>
</tr>
<tr>
<td>Überbauflächen</td>
<td>4</td>
</tr>
<tr>
<td>Großbrücken</td>
<td>5</td>
</tr>
</tbody>
</table>